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I. INTRODUCTION

The last decade is marked by a breakthrough in the solu-
tion of a classical probabilistic problem, known as “Ulam
problem” discussed in the mathematical literature over the
years �1�. The general setting of the Ulam problem is as
follows. Take the unit interval �0,1� and pick up from it one
after another N random numbers �N�1� with uniform prob-
ability distribution. Having the sequence of N random num-
bers, one can extract from it the longest increasing subse-
quence �LIS� of k elements. The entries of this subsequence
are not obliged to be the nearest neighbors. There are two
basic questions of interest: �i� What is the expectation �k�N��
of LIS? �ii� What are the fluctuations of the mean length of
LIS? The first question has been answered in 1975 by Ver-
shik and Kerov �2� who have shown that �k�N��=2�N for
N�1. They derived this result by mapping the expectation
of the LIS to the expectation of the first row of ensemble of
Young tableaux over the Plancherel measure. If the initial
random sequence contains repeated numbers, then the first
line of the Young tableau corresponds to the longest nonde-
creasing subsequence.

The progress in treatment of fluctuations of LIS was the
subject of recent investigations �3–8�. In these works an ex-
act asymptotic form of a properly normalized full limiting
distribution has been established �the so-called Tracy-Widom
distribution� of the first row of the Young tableau over the
Plancherel measure by mapping to the distribution of the
largest eigenvalues of some classes of random matrices �3�.
In particular it has been shown that the properly normalized
variance of LIS has for N�1 the asymptotic scaling form
var�k�N����k2�N��− �k�N��2=cN1/3, where c= ���− ����2�
=0.8132. . . and � has the Tracy-Widom distribution for the
Gaussian unitary ensemble.

We would like also to point out a deep connection be-
tween the distributions of edge states of random matrices and
of statistical characteristics of some random growth models.

In one of the most stimulating work �5�, it has been shown
that a �1+1�-dimensional model of directed polymers in ran-
dom environment, which is in the Kardar-Parisi-Zhang
�KPZ� universality class, has the Tracy-Widom distribution
for the scaled height �energy�. Around the same time the
authors of �8� have found an exact mapping between a spe-
cific polynuclear growth �PNG� model and the LIS problem.
The same Tracy-Widom distribution was reported in another
class of �1+1�-dimensional growth models called “oriented
digital boiling” model �9�.

In our work we report some observations concerning the
statistics of longest increasing subsequences. Namely, we
provide an evidence that the expectation of LIS, its variance,
and apparently the full distribution function appears in a sta-
tistical analysis of some properly scaled simple nonlinear
stochastic partial differential equation �SPDE� in a limit of
very low noise intensity.

The paper is organized as follows. In Sec. II we introduce
all the necessary definitions. In particular, we describe LIS as
the hight profile of some uniform discrete growth problem
with nonlocal long-ranged interactions. In Sec. III we con-
sider the discrete short-ranged asymmetric uniform growth
process and derive the corresponding continuous space-time
SPDE for the height profile. In Sec. IV we show that the
properly scaled limit of an infinitely small noise in the de-
rived SPDE adequately describes the growth with long-
ranged interactions, i.e., the statistics of LIS. The discussion
and conclusions are collected in Sec. V.

II. LIS AS A HEIGHT PROFILE IN A UNIFORM
ASYMMETRIC NONLOCAL GROWTH PROCESS

The standard construction of a Young tableau for the set
of real numbers is realized via the well known Robinson-
Schensted-Knuth algorithm �RSK� which can be found in
many textbook on representation theory, and for example, in
�10�. The RSK algorithm ensures that the first row of the
corresponding Young tableau would be the Longest Increas-
ing Subsequence �LIS� for a given set of numbers. To be
specific, consider the example of N=8 numbers:
4,4,3,6,7,3,4,2 taken at random with uniform probability dis-
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tribution from the support 	1,…,9
. Following the RSK algo-
rithm of the Young tableau construction, we get the Young
tableau shown in Fig. 1�a�. Let us describe now more geo-
metrically obvious construction of LIS which refers to the
discrete uniform asymmetric ballistic deposition of elemen-
tary cells with long-ranged interactions. This construction
has appeared for the first time in �11�.

Consider the �1+1�D model of ballistic deposition in
which the columnar growth occurs sequentially on a linear
substrate consisting of L columns with free boundary condi-
tions. The time t is discrete and increases by 1 with every
deposition event. We start with the flat initial condition, i.e.,
an empty substrate at t=0. At any stage of the growth, a
column �say the column m� is chosen at random with prob-
ability p=1/L and a “cell” is deposited there which increases
the height of this column by one unit: hm→hm+1. Once this
“cell” is deposited, it screens all the sites at the same level in
all the columns to its right from future deposition, i.e., the
heights at all the columns to the right of the column m must
be strictly greater than or equal to hm+1 at all subsequent
times. Formally such a growth is implemented by the follow-
ing update rule. If the site m is chosen at time t for deposi-
tion, then

hm�t + 1� = max	hm�t�,hm−1�t�, . . . ,h1�t�
 + 1. �1�

The model is anisotropic and long-ranged and evidently even
the average height profile �hm�t�� depends nontrivially on
both the column number k and time t. Let us demonstrate
now the a bijection between the longest nondecreasing sub-
sequence in the sequence of N random numbers uniformly
taken from the support 	1,2 ,3 , . . .L
 and the height in the
uniformly growing heap with anisotropic infinite-ranged in-
teractions in a bounding box containing L columns.

This bijection is defined by assigning the first line in the
Young tableau to the “most top” �or “visible” from the left-
hand side� blocks—see the Fig. 1�b�. For the configuration
shown in Fig. 1 we have the sequence of N=8 numbers:
4,4,3,6,7,3,4,2 taken at random from the set 	1,…,9
 �there
are L=9 columns in the box�. The “visible” blocks define the
longest nondecreasing subsequence �LNS�: 2,3,4,7. To be ex-
act, if there are few LNSs, our construction extracts one of
them—exactly as in the RSK scheme.

As one can see in Fig. 1, the first line in the Young tableau
�1� exactly matches the “most top” subsequence defined in
our model and the distribution of the maximal height of a
heap coincides with the distribution of the longest nonde-
creasing subsequence.

III. SHORT-RANGED ASYMMETRIC BALLISTIC
GROWTH AND ITS CONTINUOUS LIMIT

Consider a one-dimensional discrete model of ballistic
deposition with asymmetric �one-sided� next-nearest-
neighboring �NNN� interactions

hj�t + 1� = max	hj�t�,hj−1�t�
 + � j�t� , �2a�

where hj�t� is the height of a surface at the lattice position j
and time t �the time is discrete as well� and � j�t� is a
telegraphlike uncorrelated noise:

� j�t� = �1 with probability p ,

0 with probability 1 − p ,
� �2b�

where

� j�t� = p ,

�� j�t1� − � j�t1����m�t2� − �m�t2�� = p�1 − p�� j,m�t1,t2
.

�2c�

The bar denotes averaging over the distribution �2b�. Equa-
tions �2a�–�2c� completely describe the updating rules for the
NNN discrete ballistic deposition with the asymmetric inter-
actions shown in Fig. 2.

In order to derive a continuous model corresponding to
Eq. �2a�, we represent the max	¯
 operator in Eq. �2a� at
time t by a sgn function sgn�z�:

max	hj−1,hj
 =
1

2
hj−1�1 + sgn�hj−1 − hj��

+
1

2
hj�1 + sgn�hj − hj−1�� , �3�

where

sgn�z� = �+ 1 for z � 0,

− 1 for z � 0.
�

Substituting Eq. �3� into Eq. �2a� we get after some simple
algebra

FIG. 1. �a� Young tableau; �b� asymmetric ballistic
deposition.

FIG. 2. Updating rules for the asymmetric NNN ballistic depo-
sition defined in Eq. �2a�.
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hj�t + 1� − hj�t� = −
1

2
�hj�t� − hj−1�t��

+
1

2
�hj�t� − hj−1�t��sgn�hj�t� − hj−1�t��

+ � j�t� . �4�

In the last expression one can easily identify the finite-
difference derivatives. Denoting the spatial and temporal in-
crements by �x and �t and taking into account that
sgn�az�=sgn�z� �for a�0�, we arrive at the following ex-
pression

�th�x,t� = −
1

2

�x

�t
�xh�x,t�„1 − sgn��xh�x,t��… +

1

�t
��x,t� ,

�5�

where �th�x , t� and �xh�x , t� denote the partial derivatives of
h�x , t� with respect to t and x correspondingly. Setting in Eq.
�5� �t=�x=1 we arrive at the nonlinear stochastic partial
differential equation �SPDE� which is a continuous analog of
the discrete asymmetric ballistic deposition described by Eq.
�2a�. The noise in Eq. �5� is still defied by Eqs. �2b� and �2c�.

It is known �12� that symmetric ballistic deposition model
with NNN interactions in the continuous limit has some rel-
evance to KPZ equation �13�. For better comparison of the
KPZ equation with our SPDE one, rewrite Eq. �5� as follows:

�th�x,t� =
1

2

�xh�x,t�
 −

1

2
�xh�x,t� + ��x,t� �6a�

or, equivalently,

�th�x,t� = ���x,t� − �xh�x,t� if �xh�x,t� � 0,

��x,t� if �xh�x,t� � 0,
� �6b�

with ��x , t� given by Eqs. �2b� and �2c�. One sees that the
stochastic equation �6a� does not contain a diffusion term
and is very different from the KPZ one. However, as will be
shown below, the expectation �h�x , t�� of Eq. �6a� converges
for t�1 and x�1 to the expectation of LIS for a noise
��x , t� with very small intensity p �p�L−2�. The same is
valid for the variance, var�h�x , t��, which demonstrates the
KPZ scaling behavior for sufficiently large values of x. All
that allows us to conjecture that the full distribution of h�x , t�
for small p converges to a Tracy-Widom distribution of LIS.
Let us note that the structure of Eq. �6b� “ideologically”
resembles the structure of the one-dimensional Barenblatt
model for the field u�x , t� with different diffusion constants
for �tu�x , t��0 and �tu�x , t��0 �14�. However, in the Baren-
blatt model the diffusion coefficient experiences the break as
a function of a partial derivative in t while in our model the
partial derivative in x is responsible for the break. Since that
difference we do not expect that the Barenbblatt model could
have any signature of KPZ-type behavior.

IV. SPDE IN THE INFINITELY RARE NOISE
REGIME AND LIS

In this section we show that the limit of a telegraphlike
noise with small intensity in the stochastic partial differential

equation �6a� for the “height” function h�x , t� has LIS statis-
tics. To do that, it is convenient to describe LIS in terms of
�1+1�D ballistic deposition �BD� set by Eq. �1�.

Let us begin with the limiting case of absence of any
noise in Eq. �6a�. The noiseless equation �6a� is invariant
under the scaling transformation h�x , t�→h�ax ,at� for any a.
Rewriting Eq. �6a� in a finite-difference form on the lattice,
we have

h�x,t + �t� = h�x,t� +
1

2
�t�h�x,t� − h�x − �x,t�

�x
�

−
1

2
�t�h�x,t� − h�x − �x,t�

�x
� . �7�

We can set �t=�x=1 and x= j on the interval 0	 j	L with-
out any loss of generality. The noiseless system defined by
Eq. �7� has a characteristic time scale 
�L of reaching the
equilibrium. Hence, after t time steps, where t�
, the sys-
tem described by Eq. �7� reaches its stationary state generat-
ing a nondecreasing staircaselike profile from any initial
state. This can be seen recursively:

h�j,t + 1� = h�j − 1,t� if h�j − 1,t� � h�j,t� ,

h�j,t + 1� = h�j,t� if h�j − 1,t� � h�j,t� . �8�

Since Eq. �8� is valid for any 0	 j	L, after t�L time steps,
if in the initial state h�j=L , t=0��h�j=1, t=0� then the
heights at x=L and x=1 equalize: h�j=L , t�=h�j=1, t�. This
signals the appearance of effective long-ranged spatial corre-
lations in the system on characteristic time scales of 
�L.

To show the equivalence of SPDE and LIS in a noisy
regime with small intensity, it is convenient to introduce the
enveloping functions rm�t� and r�x , t� for long-ranged �LR�
BD and SPDE correspondingly:

rm�t� = max	hm�t�, . . . ,h1�t�
 LR BD �Eq. �1�� ,

r�x,t� = max
0	y	x

	h�y,t�
 SPDE. �9�

If the intensity, p, of the noise ��x , t� is small, after each
noise event the function h�x , t� has time to reach its relaxed
form r�x , t� before the subsequent noise contribution is
added. The corresponding intensity, p, can be easily esti-
mated. Namely, the mean time interval, 
, between positive
noise events ���x , t�=1� for a system of size L and noise
intensity p is 
�1/Lp. In more details this question is dis-
cussed in Appendix A. Since the function h�x , t� reaches the
relaxed state r�x , t� at 
�L, we can estimate p as p�L−2.
Now Eqs. �1� and �6a� can be rewritten in the unified form:

hm�t + 1� = rm�t� + 1 long-ranged BD �Eq. �1�� ,

h�x,t + �t� = r�x,t� + ��x,t� SPDE with p � L−2. �10�

In this form the equivalence between long-ranged BD and
SPDE in a low-intensity noise regime is clearly seen.

Thus, relying on the equivalence between statistics of LIS
and low-intensity solutions of SPDE �6a�, and knowing ex-
plicitly all the moments of the distribution of LIS �see, for
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example �5��, we get the following asymptotic expressions
for the expectation, �h�x , t��, and for the variance,
var�h�x , t����h�x , t�2�− �h�x , t��2:

�h�x,t�� = tp + 2�xtp , �11�

var�h�x,t�� = c�xtp�1/3, �12�

where h�x , t� is the asymptotic solution of Eq. �6a� with the
noise distribution �2c�. In Eq. �12� c= ���− ����2�=0.8132. . .
and � has the Tracy-Widom distribution for the Gaussian
unitary ensemble. Note that for p=1/L and x= t=L �L�1�
we arrive in Eq. �11� at the Vershik-Kerov result for the
expectation of LIS, �h�L��=2�L. To be rigorous, this expres-
sion is beyond our approximation since we are limited by the
noise intensity pcr=1/L2. So, it is more convenient to work
with the general expressions �11� and �12�.

We confirm our analytic predictions �11� and �12� by nu-
merical computations, simulating directly the ballistic depo-
sition process �1� and the stochastic partial differential equa-
tion �6a� with noise intensity p=0.1/L and initial condition
h�x , t=0�=0. Note that the intensity of the noise in our nu-
merical simulations is L /10 times larger than the upper esti-
mate p�1/L2, however the agreement with theoretical re-
sults �11� and �12� is still very good. In particular, we plot in
Fig. 3�a� the average profiles �h�x , t�� for long-ranged BD
and SPDE as a function of x �0	x	L� for L=103 at time
points t=2�104 ,6�104 ,105. In the same figure we plot the
analytic expression �11�. In Figs. 3�b� and 3�c� we plot in
double logarithmic scale the variance var�h�x ,n��
= �h�x , t�2�− �h�x , t��2 as a function of x for the same time
points t. It should be noted that due to the numerical proce-
dure of the definition of the height, the numerical computa-
tion of the variance leads to the following interpolating ex-
pression for var�h�x , t��=a�t�+c�xpt�1/3. However, for x�1
and t=const, we arrive asymptotically at the expression �12�.
That is why we compare the expression �12� with the nu-
merical data for large x only �Fig. 3�c�� where the term a�t� is
negligible. However, the agreement between long-ranged BD
and SPDE is very good both for the expectation and the
variance—see Figs. 3�a� and 3�b�. All plots are dimension-
less under the supposition �t=�x=1.

V. CONCLUSION

We have argued by the sequence of mappings that the
expectation and the variance of the random profile h�x , t�,
described by the stochastic nonlinear partial differential
equation �6a� in the limit of a noise with very low intensity,
coincides with the expectation �11� and the variance �12� of
the longest nondecreasing subsequence of the sequence of
random integers. This statement is also confirmed numeri-
cally. On the basis of the obtained results we conjecture that
not only the first moments, but the full probability distribu-
tion function of the random variable h�x , t� coincides with
the Tracy-Widom distribution appearing in largest eigen-
value statistics of ensembles of random matrices.

Let us note that our analysis of Eq. �6a� is a bit indirect. It
would be very desirable to get expectation and variance �11�

and �12� of the random variable h�x , t� directly from the so-
lution of the Fokker-Planck equation which corresponds to
the Langevin equation �6a�. However on this way we have
met some difficulties. Namely, rewrite Eq. �6a� as follows:

�th�x,t� =
1

2

�xh�x,t�
 −

1

2
�xh�x,t� + ��x,t� + p , �13�

where ��x , t�=��x , t�− p; ��x , t�=0, ��x , t���x� , t��
=2D�x,x��t,t�, and D= 1

2 p�1− p�. Now we can write the formal
expression for the Fokker-Planck variational equation for the
function W�h , t� �see, for example �15��:

FIG. 3. �a� The mean profile �h�x , t�� as a function of x for
time points t=2�104 ,6�104 ,105 for BD and SPDE in comparison
with the analytical results �11�; �b�, �c� The log-log plots of
the variance var�h�x , t�� as a function of x at time points
t=2�104 ,6�104 ,105 for BD and SPDE in comparison with the
analytic result �12�. Squares and dotted line correspond to the time
t=20 000 steps ��, BD; �, SPDE�. Circles and dashed line corre-
spond to the time t=60 000 steps ��, BD; �, SPDE�. Triangles and
solid line correspond to the time t=100000 ��, BD; �, SPDE�. The
length of the system is L=1000.
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�W�h,t�
�t

= −� dx
�

�h
��1

2

�xh
 −

1

2
�xh + p�W�h,t��

+ D� dx
�2

�h2W�h,t� . �14�

One can further simplify this equation by transforming into

Ŵ defined as

Ŵ�h,t� � W�h,t�e−�p/D��h�x,t�dx, �15�

and thus eliminating the p dependence from Eq. �14�. This in
turn can be rearranged in a form of two coupled equations:

�Ŵ�h,t�
�t

= D� dx
�2Ŵ�h,t�

�h2

− �� dx�xh
�Ŵ�h,t�

�h
if �xh � 0,

0 if �xh � 0,
� �16�

where we have taken into account that �� /�h���xh�x , t��=0.
Although this equation takes now an apparently simple form,
the inherent nonlinearity makes it extremely difficult to
solve. When looking for stationary solutions �that satisfy

�Ŵ�h , t� /�t=0� it is easy to rule out the possibility of a so-
lution that respects detailed balance. It is also easy to see that
in the limit of small D a stationary solution �if exists� is
likely to respect �xh�0. However, going beyond these
simple observations has not been achieved so far.

The Fokker-Planck equation �16� corresponds to the sto-
chastic process �6b� which can be visualized alternatively as
a �2+1�-dimensional correlated growth. Using the finite-
difference form �7� of Eq. �6b� on the lattice, where we set
�x=�t=1 and x= j, we arrive at the following stochastic
recursion relation:

h�x,t + 1� = h�x,t� + ��x,t�

− �h�x,t� − h�x − 1,t� if h�x,t� � h�x − 1,t� ,

0 if h�x,t� � h�x − 1,t� ,
�

�17�

with the initial and boundary conditions h�x , t=0�
=h�x=0, t�=0. Create now the initial configuration distribut-
ing the random variable ��x , t� in the plane x
1, t
1. Since
��x , t� takes the values 0 or 1, we can show �=1 by black
unit segments as it is shown in Fig. 4. The initial configura-
tion at t=1 is depicted in Fig. 4�a�. Now applying Eq. �17�
we can constrict recursively the configuration of the field
h�x , t� at subsequent time moments. Few configurations of
the field h�x , t� for given initial distribution of ��x , t� is
shown in Figs. 4�b�–4�d� for time moments t=2,3 ,4 and
x=1, . . . ,5.

The �2+1�-dimensional stochastic growth shown in Fig. 4
bijectively corresponds to the short-ranged ballistic growth
considered in Sec. III and, hence, in the limit of small inten-
sity p should correspond to the statistics of LIS. It would be

very desirable to simulate numerically directly the growth
model shown in Fig. 4 to check the validity of the conjec-
tured bijection.

We complete our consideration with the model with inter-
mediate length of one-sided “arm.” The extension of the
rules �2a� and �2b� are as follows:

hj�t + 1� = max	hj�t�,hj−1�t�, . . . ,hj−k�t�
 + � j�t� , �18a�

where

� j�t� = �1 with probability p ,

0 with probability 1 − p .
� �18b�

After some simple algebra reproduced in Appendix B we
arrive at the following PDE:

�th�x,t� =
k

2
�
�xh�x,t�
 − �xh�x,t�� + ��x,t� . �19�

Absorbing the parameter k /2 into the time scale, we see that
we end up with the same equation as before �compare Eqs.
�19� and �6a�� with rescaled noise. The expression �19� gives
an additional support of our main result that the short-ranged
and long-ranged models differ only with the time scale of the
noise.
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APPENDIX A: EQUILIBRATION TIME FOR SPDE

In the limit of small p �p�1� the actual mean profile
�h�x , t�� tends to the curve y�x , t�= tp+2�xtp. However for
larger values of p �p�1� the resulting profile does not have

FIG. 4. Visualization of the stochastic growth determined by the
recursion relation �17� for x=1, . . . ,5 and for several time slices �a�
t=1, �b� t=2, �c� t=3, and �d� t=4. �Space and time are dimension-
less, �x=�t=1.�
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enough time to relax and hence is displaced below the curve
y�x , t�. The question which we address here concerns the
estimation of the time interval, 
, between the subsequent
deposition events sufficient to approach the stable solution
y�x , t�.

We can estimate the equilibration time, 
, from the fol-
lowing arguments. The slope of the mean profile in the sta-
tionary state is

�y�x,t�
�x

=�pt

x
. �A1�

Hence the average length of the horizonal “plateau” is about

l�x� �
1

�y�x,t�
�x

�� x

pt
. �A2�

We define the equilibration time, 
, as a time t in Eq. �A2�
during which the length, l�x�, of the plateau becomes that of
the order of the system size, L. Substituting for x in Eq. �A2�
the maximal value x=L, we arrive at the following estimate:

L �� L

p

,

which gives us


 �
1

Lp
. �A3�

Comparing the equilibration time �A3� with the characteristic
time of the system relaxation, 
�L, we arrive at the estimate
for the critical noise intensity, pcr,

pcr �
1

L2

below which the stochastic partial differential equation �6a�
has long-ranged behavior typical for the LIS problem.

APPENDIX B: SPDE FOR GROWTH MODEL WITH
INTERMEDIATE LENGTH OF THE “ARM”

Our starting point is Eq. �18a�. Using a generalization of
Eq. �3� we can write the max operator in the following form:

max	hj,hj−1, . . . ,hj−k
 =
1

2k�
i=0

k

hj−i �
�=0

��i

k

�1 + sgn�hj−i − hj−��� .

�B1�

After some simple algebra, and using the fact that
sgn2�z�=1, we get

�
i=0

k

hj−i �
�=0

��i

k

�1 + sgn�hj−i − hj−���

= hj�1 + sgn� �h

�x
��k

+ hj−k�1 − sgn� �h

�x
��k

. �B2�

Using the identity

�1 ± sgn� �h

�x
��k

= 2k−1�1 ± sgn� �h

�x
�� , �B3�

we arrive at the following expression:

hj�t + 1� − hj�t� =
1

2
�hj�t� − hj−k�t���sgn� �h

�x
� − 1� + � j�t� ,

�B4�

which becomes Eq. �19� in the continuum limit.
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